Skip to content

Authors Contributions:

Justin Emery – Université de technologie de Compiègne, AVENUES, Centre Pierre Guillaumat – CS 60 319 – 60 203, Compiègne Cedex, France

Benjamin Pohl, Julien Crétat, Yves Richard, Julien Pergaud, Mario Rega, Sébastien Zito, Julita Dudekand Thibaut Vairet – Centre de Recherches de Climatologie, UMR 6282 Biogéosciences, CNRS/Univ Bourgogne Franche-Comté, France

Thibaut Vairet, Daniel Joly and Thomas Thévenin – UMR 6049 THEMA, CNRS/Univ Bourgogne Franche-Comté, France


This study analyses mobile measurements of urban temperatures in Dijon (eastern France) to quantify the influence of urban form on the micro-scale variability of air temperature. A route was ridden identically on 33 spring and summer evenings on a bike fitted out with measuring instruments (VeloClim). These evenings followed sunny calm days conducive to the formation of thermal contrasts and urban heat islands (UHIs). Two typologies, Corine Land Cover (CLC) and Local Climate Zones (LCZ), are used to assess the impact of urban form and land cover on air
temperatures based on Analysis Of Variance (ANOVA). ANOVA is applied to the mean of runs to maximize the effect of surface states, and to each run individually to maximize the influence of weather conditions.

The results show that both typologies prove relevant and complementary for studying the impact of vegetated and artificialized zones on urban temperature. Temperature variations on intra-urban scales are significantly modulated by urban form and land cover types. Vegetated
areas are systematically cooler than impervious surfaces. Independently of meteorological conditions, urban form has a decisive influence on air temperature and each CLC or LCZ category has
an original air temperature signature.